Lecture 15

Basics of Sets \& Functions

What's a Set?

Definition: A set is an unordered collection of objects, called elements or members of the set. $a \in A$ denotes that a is a member of A, and $a \notin A$ denotes that a is not a member of A.

Examples:

$$
\left.\begin{array}{l}
V=\{a, e, i, o, u\}, \text { is the set of vowels in English alphabet. } \\
E=\{2,4,6,8,10\}, \text { is the set of positive even integers } \leq 10 .
\end{array} \quad \begin{array}{l}
\text { Roster notation. } \\
E=\{x \mid x \text { is a positive even integer } \leq 10\} \\
\mathbb{Q}^{+}=\left\{x \in \mathbb{R} \left\lvert\, x=\frac{p}{q}\right., \text { for some positive integers } p \text { and } q\right\}
\end{array}\right\} \quad \text { Set builder notation. } \quad \text {. } \quad \text {. } \quad \text {. }
$$

Note: It is not necessary that members of a set should have a common property. For instance, $\{99$, Bob, Jupiter $\}$ is a valid set.

More about Sets

Definition: Two sets are equal if and only if they have the same elements. In other words, if A and B are sets, then $A=B$ if and only if $\forall x(x \in A \Longleftrightarrow x \in B)$.

Example: $\{1,2,3\}=\{1,3,2\}$ because they contain the same elements and the order does not matter. It also does not matter whether one element is listed more than once, therefore, $\{1,2,3,3,2,2\}=\{1,2,3\}$.

Definition: A set that contains no elements is called the empty set and denoted by \varnothing. A set with just one element is called a singleton set.

Note: Do not confuse \varnothing with $\{\varnothing\}, \varnothing$ is the empty set and $\{\varnothing\}$ is a singleton set.

Russell's Paradox

Let's define a set S as

$$
S=\{x \mid x \text { is a set such that } x \notin x\}
$$

It is reasonable to believe that an object either belongs to a set or not.
But,

$$
\begin{array}{ll}
S \in S \rightarrow S \notin S & \text { (Assuming } S \in S \text { lead to } S \notin S \text {, so } S \in S \text { cannot be true.) } \\
S \notin S \rightarrow S \in S & \text { (Assuming } S \notin S \text { lead to } S \in S \text {, so } S \notin S \text { cannot be true.) }
\end{array}
$$

Problem lies in our intuitive notion of an object in the definition of Set.

- The theory that develops from this definition of set is called Naive Set Theory.
- Axiomatic set theories such as ZFC avoid these contradictions by having a set of axioms through which you can form a set.
- We will still continue with Naive Set Theory and avoid sets that can lead to contradictions.

Subsets and Cardinality

Definition: The set A is a subset of B iff every element of A is also an element of B. $A \subseteq B$ denotes that A is a subset of B.

Proving $A \subseteq B, A \nsubseteq B, A=B$:

- To prove $A \subseteq B$, show that if $x \in A$, then $x \in B$.
- To prove $A \nsubseteq B$, find an x in A such that $x \notin B$.
- To prove $A=B$, show that $A \subseteq B$ and $B \subseteq A$.

Definition: Let S be a set. If there are exactly n distinct elements in S, where n is a nonnegative integer, we say that S is a finite set and that n is the cardinality of S. The cardinality of S is denoted by $|S|$. A set is said to be infinite if it is not finite.

Ordered Tuple

Definition: The ordered n-tuple $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ is the ordered collection that has a_{1} as its first element, a_{2} as its second element, \ldots, and a_{n} as its nth element. Ordered 2-tuples are called ordered pairs.

Two ordered n-tuples, say $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ and $\left(b_{1}, b_{2}, \ldots, b_{n}\right)$, are equal if and only if each corresponding pair of their elements are equal, i.e., $a_{i}=b_{i}$ for $i=1,2, \ldots, n$.

Cartesian Product

Definition: Let A and B be sets. The Cartesian product of A and B, denoted by $A \times B$, is the set of all ordered pairs (a, b), where $a \in A$ and $b \in B$. Hence,

$$
A \times B=\{(a, b) \mid a \in A \wedge b \in B\}
$$

Example: Let $A=\{a, b\}$ and $B=\{1,2,3\}$. Then

$$
\begin{aligned}
A \times B & =\{(a, 1),(a, 2),(a, 3),(b, 1),(b, 2),(b, 3)\} \\
B \times A & =\{(1, a),(1, b),(2, a),(2, b),(3, a),(3, b)\}
\end{aligned}
$$

Definition: The cartesian product of the sets $A_{1}, A_{2}, \ldots, A_{n}$, denoted by $A_{1} \times A_{2} \times \ldots \times A_{n}$, is the set of ordered n-tuples $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$, where a_{i} belongs to A_{i}, for $i=1,2, \ldots, n$.

Set Operations

Let A and B be two sets. Then the following operation can be defined on them,
Union: Denoted by $A \cup B$, is the set of all the elements that are either in A or B, or in both.
Intersection: Denoted by $A \cap B$, is the set of all the elements that are in both A and B.
A and B are disjoint, if $A \cap B=\varnothing$.
Difference: Denoted by $A-B$, is the set of all the elements that are in A but not in B.
Complement: Let U be the universal set. The complement of the set A, denoted by \bar{A}, is the complement of A with respect to U, i.e., $U-A$.

Note: Union and intersection of more than two sets defined as the natural extension of union and intersection of two sets.

Set Identities

Identity Laws: $\begin{aligned} & A \cap U=A \\ & A \cup \varnothing=A\end{aligned}$
De Morgan's Laws: $\begin{aligned} & \overline{A \cap B}=\bar{A} \cup \bar{B} \\ & \overline{A \cup B}=\bar{A} \cap \bar{B}\end{aligned}$
Domination Laws: $\begin{aligned} & A \cup U=U \\ & A \cap \varnothing=\varnothing\end{aligned}$
Complement Laws: $A \cup(A \cap B)=A$
Complement Laws. $A \cap(A \cup B)=A$
Idempotent Laws: $\begin{gathered}A \cup A=A \\ A \cap A=A\end{gathered}$
Absorption Laws: $A \cup(A \cap B)=A$
Absorption Laws: $A \cap(A \cup B)=A$

Complementation Law: $\overline{(\bar{A})}=A$
Distributive Laws:
$A \cup(B \cap C)=(A \cup B) \cap(A \cup C)$ $A \cap(B \cup C)=(A \cap B) \cup(A \cap C)$

Functions

Definition: Let A and B be nonempty sets. A function f from A to B is an assignment of exactly one element of B to each element of A. We write $f(a)=b$ if b is the unique element of B assigned by the function f to the element a of A. If f is a function from A to B, we write $f: A \rightarrow B$. A is called the domain of f and B is called the image or range of f.

A function

Not a function

One-to-One Functions

Definition: A function f is said to be one-to-one or an injunction, if and only if $f(a)=f(b)$ implies that $a=b$ for all a and b in the domain of f.

An injunction

Not an injunction

Onto Functions

Definition: A function f is said to be onto or a surjection, if and only if for every element $b \in B$ there is an element $a \in A$ with $f(a)=b$.

A surjection

Not a surjection

Bijective Functions

Definition: A function f is said to be a bijection, if and only if it is both one-to-one and onto.

Inverse Function and Composition of Functions

Definition: Let f be a bijection from A to B. The inverse function of f, denoted by f^{-1}, is the function that assigns to an element b of B the unique element a in A such that $f(a)=b$, i.e, $f^{-1}(b)=a$.

Definition: Let g be a function from A to B and let f be a function from B to C. The composition of the functions f and g, denoted by $f \circ g$ for all $a \in A$, is defined by

$$
(f \circ g)(a)=f(g(a))
$$

