Lecture 15

Basics of Sets & Functions

What's a Set?

Definition: A set is an unordered collection of objects, called elements or members of the set. $a \in A$ denotes that a is a member of A, and $a \notin A$ denotes that a is not a member of A.

Examples:

Note: It is not necessary that members of a set should have a common property. For instance, {99, Bob, Jupiter} is a valid set.

 $V = \{a, e, i, o, u\}, \text{ is the set of vowels in English alphabet.}$ $E = \{2, 4, 6, 8, 10\}, \text{ is the set of positive even integers} \le 10.$ $E = \{x \mid x \text{ is a positive even integer } \leq 10\}$ $\mathbb{Q}^+ = \{x \in \mathbb{R} \mid x = \frac{p}{q}, \text{ for some positive integers } p \text{ and } q\}$ Set builder notation.

More about Sets

if A and B are sets, then A = B if and only if $\forall x (x \in A \iff x \in B)$.

 $\{1,2,3,3,2,2\} = \{1,2,3\}.$

Definition: A set that contains no elements is called the **empty set** and denoted by \emptyset . A set with just one element is called a **singleton set**.

Note: Do not confuse \emptyset with $\{\emptyset\}, \emptyset$ is the empty set and $\{\emptyset\}$ is a singleton set.

Definition: Two sets are **equal** if and only if they have the same elements. In other words,

Example: $\{1,2,3\} = \{1,3,2\}$ because they contain the same elements and the order does not matter. It also does not matter whether one element is listed more than once, therefore,

Russell's Paradox

Let's define a set S as

 $S = \{x \mid x \text{ is a set such that } x \notin x\}$

It is reasonable to believe that an object either belongs to a set or not. But,

Problem lies in our intuitive notion of an object in the definition of Set.

- The theory that develops from this definition of set is called Naive Set Theory.
- Axiomatic set theories such as ZFC avoid these contradictions by having a set of axioms through which you can form a set.
- We will still continue with Naive Set Theory and avoid sets that can lead to contradictions.

 $S \in S \rightarrow S \notin S$ (Assuming $S \in S$ lead to $S \notin S$, so $S \in S$ cannot be true.) $S \notin S \rightarrow S \in S$ (Assuming $S \notin S$ lead to $S \in S$, so $S \notin S$ cannot be true.)

Subsets and Cardinality

 $A \subseteq B$ denotes that A is a subset of B.

Proving $A \subseteq B, A \nsubseteq B, A = B$:

- To prove $A \subseteq B$, show that if $x \in A$, then $x \in B$.
- To prove $A \not\subseteq B$, find an x in A such that $x \notin B$.
- To prove A = B, show that $A \subseteq B$ and $B \subseteq A$.

Definition: Let S be a set. If there are exactly n distinct elements in S, where n is a nonnegative integer, we say that S is a finite set and that n is the cardinality of S. The cardinality of S is denoted by |S|. A set is said to be **infinite** if it is not finite.

Definition: The set A is a subset of B iff every element of A is also an element of B.

Ordered Tuple

Definition: The ordered *n*-tuple (a_1, a_2, \ldots, a_n) is the ordered collection that has a_1 2-tuples are called **ordered pairs**.

corresponding pair of their elements are equal, i.e., $a_i = b_i$ for i = 1, 2, ..., n.

as its first element, a_2 as its second element, ..., and a_n as its *n*th element. Ordered

Two ordered *n*-tuples, say (a_1, a_2, \ldots, a_n) and (b_1, b_2, \ldots, b_n) , are equal if and only if each

Cartesian Product

- **Definition:** Let A and B be sets. The **Cartesian product** of A and B, denoted by $A \times B$, is the set of all ordered pairs (a, b), where $a \in A$ and $b \in B$. Hence, $A \times B = \{(a, b)\}$
- **Example:** Let $A = \{a, b\}$ and $B = \{1, 2, 3\}$. Then $A \times B = \{(a,1), (a,2), (a,3), (b,1), (b,2), (b,3)\}$ $B \times A = \{(1,a), (1,b), (2,a), (2,b), (3,a), (3,b)\}$

$$| a \in A \land b \in B \}$$

Definition: The cartesian product of the sets A_1, A_2, \ldots, A_n , denoted by $A_1 \times A_2 \times \ldots \times A_n$, is the set of ordered *n*-tuples (a_1, a_2, \ldots, a_n) , where a_i belongs to A_i , for $i = 1, 2, \ldots, n$.

Set Operations

Let A and B be two sets. Then the following operation can be defined on them,

- **Union:** Denoted by $A \cup B$, is the set of all the elements that are either in A or B, or in both.
- **Intersection:** Denoted by $A \cap B$, is the set of all the elements that are in both A and B. A and B are **disjoint**, if $A \cap B = \emptyset$.
- **Difference:** Denoted by A B, is the set of all the elements that are in A but not in B.
- **Complement:** Let U be the universal set. The complement of the set A, denoted by A, is the complement of A with respect to U, i.e., U - A.

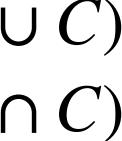
union and intersection of two sets.

Note: Union and intersection of more than two sets defined as the natural extension of

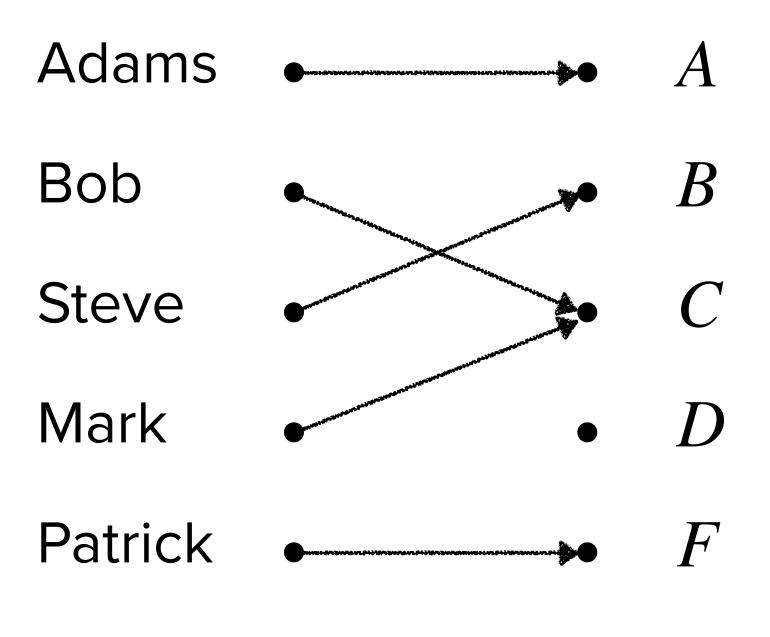


Set Identities

- **De Morgan's Laws:** $\overline{A \cap B} = \overline{A} \cup \overline{B}$ $\overline{A \cup B} = \overline{A} \cap \overline{B}$ Identity Laws: $A \cap U = A$ $A \cup \emptyset = A$ **Domination Laws:** $A \cup U = U$ $A \cap \emptyset = \emptyset$ **Complement Laws:** $A \cup (A \cap B) = A$ $A \cap (A \cup B) = A$ $A \cup A = A$ $A \cap A = A$ **Commutative Laws:** $A \cup B = B \cup A$ $A \cap B = B \cap A$ **Idempotent Laws:**
- Absorption Laws: $\begin{array}{l} A \cup (A \cap B) = A \\ A \cap (A \cup B) = A \end{array}$ Associative Laws: $\begin{array}{l} A \cup (B \cup C) = (A \cup B) \cup C \\ A \cap (B \cap C) = (A \cap B) \cap C \end{array}$
- **Complementation Law:** $\overline{(\overline{A})} = A$
- **Distributive Laws:** $\begin{array}{l} A \cup (B \cap C) = (A \cup B) \cap (A \cup C) \\ A \cap (B \cup C) = (A \cap B) \cup (A \cap C) \end{array}$

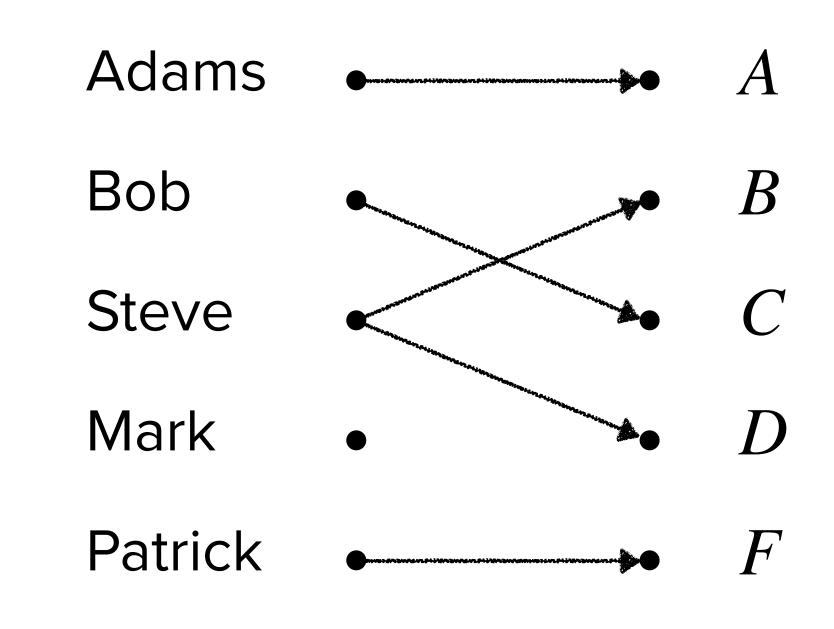


Functions



A function

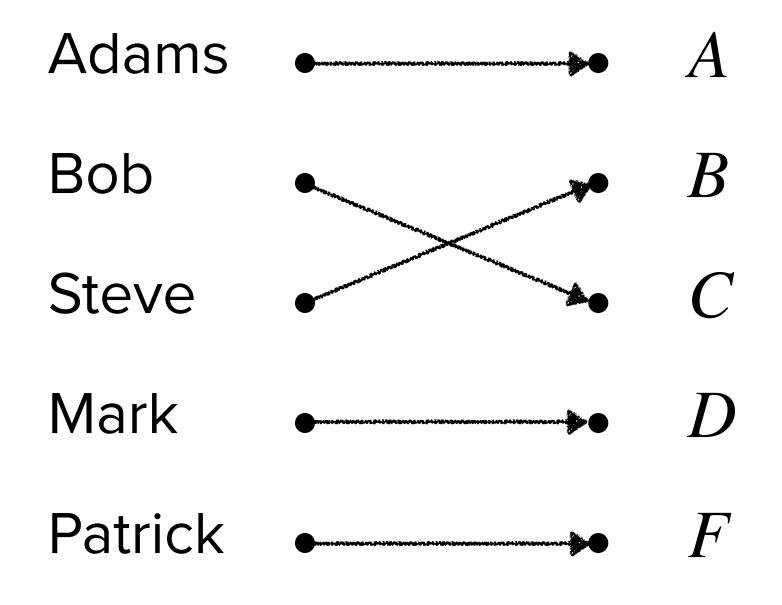
Definition: Let A and B be nonempty sets. A **function** f from A to B is an **assignment** of exactly one element of B to each element of A. We write f(a) = b if b is the unique element of B assigned by the function f to the element a of A. If f is a function from A to B, we write $f: A \to B$. A is called the **domain** of f and B is called the **image** or **range** of f.



Not a function

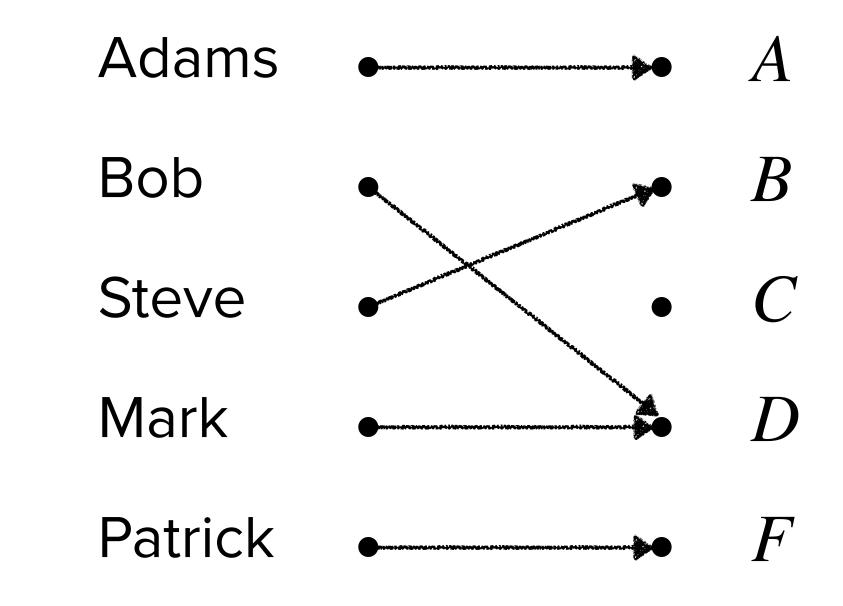
One-to-One Functions

implies that a = b for all a and b in the domain of f.



An injunction

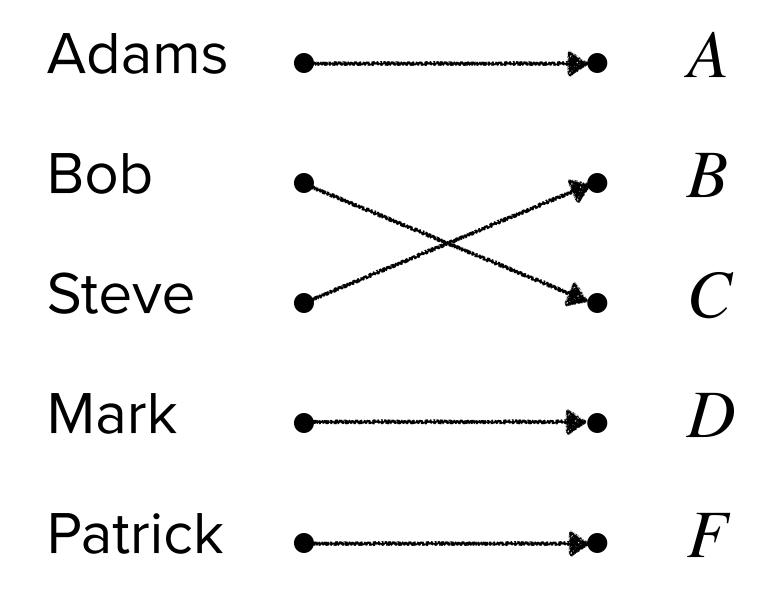
Definition: A function f is said to be **one-to-one** or an **injunction**, if and only if f(a) = f(b)



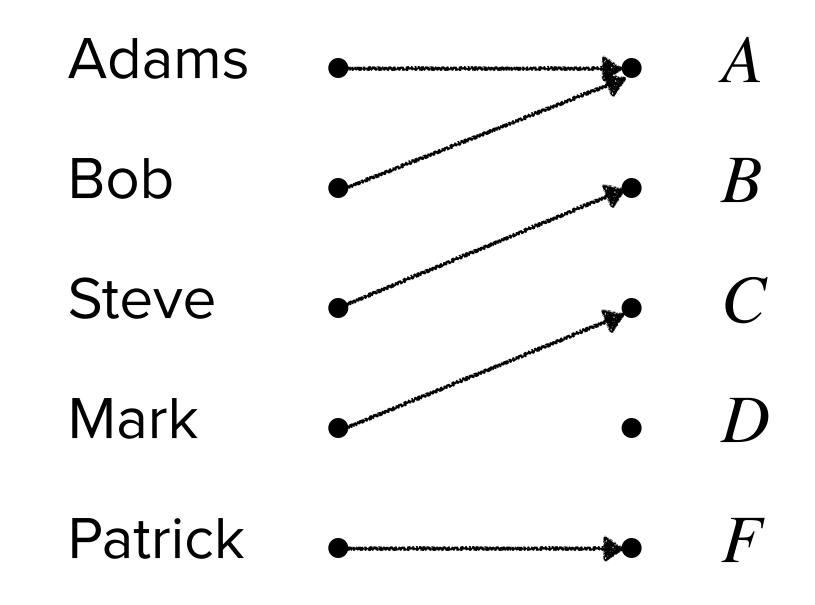
Not an injunction

Onto Functions

Definition: A function f is said to be **onto** or a **surjection**, if and only if for every element $b \in B$ there is an element $a \in A$ with f(a) = b.

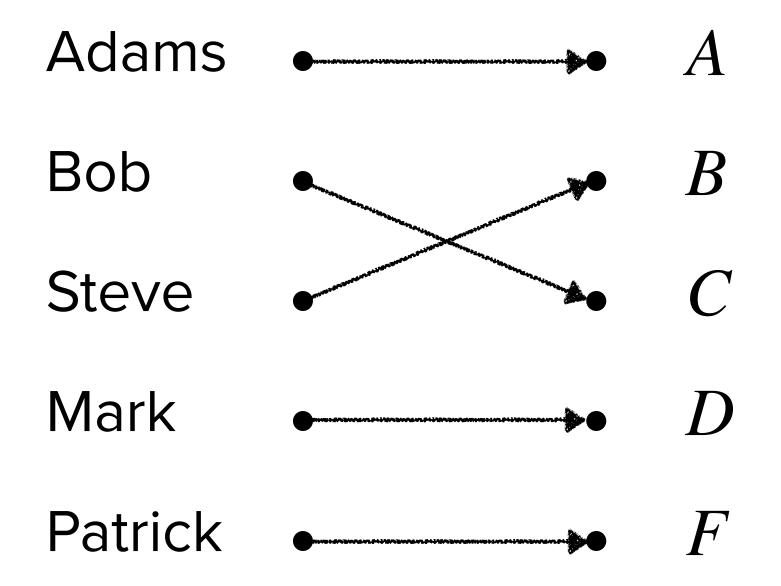


A surjection



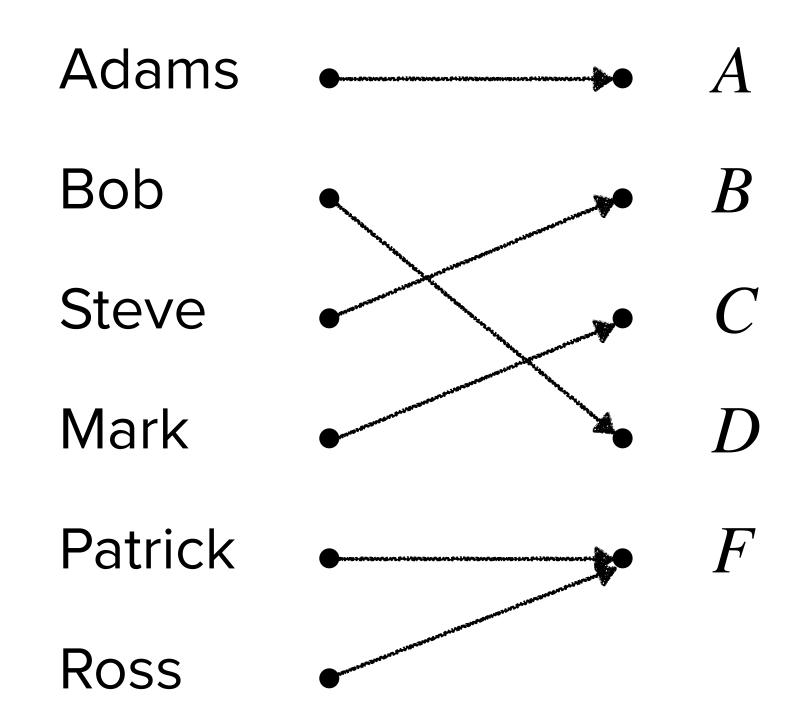
Not a surjection

Bijective Functions



A bijection

Definition: A function f is said to be a **bijection**, if and only if it is both one-to-one and onto.



Not a bijection

Inverse Function and Composition of Functions

 $f^{-1}(b) = a.$

Definition: Let g be a function from A to B and let f be a function from B to C. The **composition** of the functions f and g, denoted by $f \circ g$ for all $a \in A$, is defined by

 $(f \circ g)(a) = f(g(a))$

Definition: Let f be a bijection from A to B. The **inverse function** of f, denoted by f^{-1} , is the function that assigns to an element b of B the unique element a in A such that f(a) = b, i.e.,

